

COMP4001 Object-Oriented Software Development

Preliminary Design

Groupmembers: Richard MANTIK (2287103)
Marvyn Jiexiang MEI (2244246)

 Agus SALIM (2251992)
Hendri KURNIAWAN (3104443)

Contents

1 Introduction 3
 1.1 Overview………………………………………………………………………….. 3
 1.2 Objectives………………………………………………………………………… 3
 1.3 Scope of Work…………………………………………………………………..... 3

2 Project Requirements 4
 2.1 Minimum Requirements…………………………………………………………. 4
 2.2 Additional Requirements………………………………………………………… 4

3 Design Patterns 5
 3.1 Model View Controller…………………………………………………………… 5
 3.2 Observer…………………………………………………………………………… 6
 3.3 Mediator…………………………………………………………………………… 8
 3.4 Composite…………………………………………………………………………. 9

4 Class Diagram 10

5 Sequence Diagram 12
 5.1 Create New Document………………………………………………………....... 12
 5.2 Add Segment……………………………………………………………………... 13
 5.3 Add Resource……………………………………………………………………. 14
 5.4 Assign Resource to Task………………………………………………………… 15
 5.5 Deassign Resource………………………………………………………………. 17
 5.6 Assign Segment’s Dependency………………………………………………….. 19
 5.7 Deassign Dependency……………………………………………………………. 20
 5.8 Edit Segment…………………………………………………………………….. 23
 5.9 Edit Resource……………………………………………………………………. 25
 5.10 Open Project……………………………………………………………………. 26
 5.11 Save Project…………………………………………………………………….. 27
 5.12 Merge Project…………………………………………………………………... 28
 5.13 Close Project……………………………………………………………………. 29

6 CRC

1 Introduction

1.1 Overview

The aim of this project is to develop a project planner that provides a convenient
way of planning and managing a project. The project planner should be able to perform
tasks that are typical to other project planners, such as Microsoft Project. The project shall
be developed using Object Oriented methods, and will be written in C++.

1.2 Objectives

The ultimate aim of this project is to develop a high quality project planner. The
scope of the project will include:

1. The functional and formal specifications of this system. This report will address the

functional aspects of the requirements definition.

2. A series of working prototype that would allow the client to evaluate the progress of
this project.

3. The final software that would be demonstrated and evaluated at the end of this

development.

1.3 Scope of Work

This report will include class diagrams, sequence diagrams, and CRC cards, as
part of the Object Oriented methodology, to specify the system. These will help in the
development of the entire system.

2 Project Requirements

2.1 Minimum Requirements

The project planner should contain the following features as part of the minimum
requirements specified by the client.

1. Gantt charts.

2. Save / Load project files

3. Merge two or more saved project files

4. Edit a project: adjust times of the segments, add/remove resources.

5. Display milestones, in addition to tasks

6. Allow priorities to be assigned to each task

2.2 Additional Requirements

The project planner, in addition to the minimum requirements, will contain the
following requirements.

1. A GUI for the user to interact with the project planner

2. A graphical view to display Gantt Chart, in addition of the text based Gantt Chart

3. Check for over-utilisation of a resource when assigning resources to tasks, and when
merging two projects containing the same resource.

3 Design Patterns

3.1 Model View Controller

There are 3 components in the application that are frequently changed: the data,
the application logic and the user interface. It will be very difficult to maintain an
application that has interdependencies between these components, because changes
anywhere in these three components propagate the modification thorough the entire
application. In addition, high coupling between components makes them difficult to be
reused because one class depends on the other classes. To solve this problem, Model
View Controller can be used to decouple the data access, the application logic, and the
interface.

Controller
selectedSegment1 : Segment*
selectedSegment2 : Segment*
selectedResource : Resource*

load(fileName : String)
save(fileName : String)
merge(fileName : String)
selectSegment1(segmentNo : Integer)
selectSegment2(segmentNo : Integer)
addSegment(segmentName : String, startDate : Date, endDate : Date)
removeSegment()
editSegment(newSegmentName : String, newStartDate : Date, newEndDate : Date)
selectResource(segmentNo : Integer)
addResource(resourceName : String)
removeResource()
editResource(newResourceName : String)
assignResource(percent : Integer)
deassignResource()
assignDependancy()
deassignDependancy()

TextView

update()

GraphicalView

update()
repaint()

1

11

1

1

Project
projectTitle : String
modified : Boolean

fromFile(fileName : String)
toFile(fileName : String)
merge(project : Project*)
addSegment(segmentName : String, startDate : Date, endDate : Date) : Boolean
removeSegment(segment : Segment*) : Boolean
editSegment(segment : Segment*, newSegmentName : String, newStartDate : Date, newEndDate : Date) : Boolean
addResource(resourceName : String) : Boolean
removeResource(resource : Resource*) : Boolean
editResource(resource : Resource*, resourceName : String) : Boolean
assignResource(segment : Segment*, resource : Resource*, percent : Integer) : Boolean
deassignResource(segment : Segment*, resource : Resource*) : Boolean
assignDependancy(dependee : Segment*, dependant : Segment*) : Boolean
deassignDependancy(dependee : Segment*, dependant : Segment*) : Boolean

11

1
1

1

1
1

Table of icons for attributes and operations
Attributes
Public
Private

Operation
Public
Private

The Controller acts as Controller, Project acts as Model, and both GraphicalView

and TextView acts as Views. The Controller accepts inputs from the user and interprets
this input as commands that are sent to the Project object. The Project manages its state
and handles the queries that are sent from the Controller. Both of the GraphicalView and
TextView are responsible to present the state of the project object to the user. Any
component can change its behaviour without adverse effects to the other components.

3.2 Observer

As a consequence of partitioning the components into model and views, the need

to maintain the consistency between each state of the components arises. Both of the
GraphicalView and TextView represents the same Project’s at one time using different
format. Interdependencies between them are undesirable, because it will reduce the
reusability of the components. In this case, Observer pattern can be used to establish the
relationships between the project’s data and two of the representations. Here, the project
object acts as a subject that will notify two of the observers, namely GraphicalView and
TextView whenever there is a change of the project’s state.

TextView

update()

GraphicalView

update()
repaint()

1
1

1 1

Project

Subject

attach()
detach()
notify()

<<Interface>>

Observer

update()

<<Interface>>

for each observers{
 o->update
}

The Observer pattern makes the coupling between the data and the views minimal.

As a result, the data and views can be varied and reused independently. Since the
observers have no knowledge of each other, a new type of view can just be added to the
subject easily at any time without modifying other observers.

The following sequence diagram illustrates the interaction between a project and

its views when an event “edit resource” occurs. Upon receiving edit calls from the
Controller, the project object update its internal state and call its method “notify()” that
will send the message to all of its views to synchronize the state with the project’s state.

 : Controller : Project : TextView : GraphicalView

editResource(resource:Resource*, "andy":String)

setResourceInfo

notify()

update()

update()

repaint()

3.3 Mediator

There are dependencies between the segment and resource in a project. For
example, when the user assign a particular resource to a particular task, the system will
check the availability of the resource before the assignment is allowed, i.e. depending of
the segments' priority, those with higher priority get assigned to the resource more likely.
Another case is when a user wants to update the start date or end date of a task that has
already assigned to a particular resource, the system needs to check whether there is a
clash of that resource usage at that particular date range. If this behaviour is localized in
either resource or segment, when the change of the system behaviour is desirable, we
can't simply reuse those classes. Instead, they have to be customized to reflect the change
of dependencies.

The problem can be solved by introducing the ResourceManager that will serve as

the mediator and keep the segment and resource object from referring to each other
explicitly. Consequently, ResourceManager promotes loose coupling between segments
and resources. Segment and resource objects communicate with each other indirectly
without knowing each other, through the ResourceManager. As a result, the
ResourceManager encapsulates the collective behaviour among segments and resources.
Changing the behaviour requires extending or replacing the ResourceManager only, thus
enhances reusability of colleague classes.

 aResouceManager

 aConsumableItem

 aTask aNonConsumableItem

 aMilestone

3.4 Composite

Tasks can be divided into subtasks and milestones, and subtasks can in turn be
divided still into smaller subtasks and milestones. In contrast, milestones can only be
composed of smaller milestones. A simple solution will treat the task and milestone
objects differently. This forces the application to distinguish these objects and makes
client’s code more complex.

An alternative solution will make use of the Composite design pattern that model

the task’s composition recursively and allows the client’s code to treat task and milestone
uniformly, i.e. whenever a method addChild on task is called, it can also take a Segment.
Client doesn’t have to know whether they are dealing with task or segment in this case.
Additionally, this will make things easier when new kinds of segment are introduced to
the system. Newly defined subclasses will always work with the existing structures.

Note: A milestone can’t be divided into subtasks. This will require the client code

to use run time check to enforce this restriction so that only addChild() that takes
Milestone as an argument is called. This kind of check should also be applied when a new
subclass is added with a certain restriction.

Segment
name : String
priority : Integer

setDependant(segment : Segment*)
addChild(child : Segment*) : Boolean
removeChild(child : Segment*) : Boolean
getChild(i : Integer) : Segment*
assignDependency(dependant : Segment*) : Boolean
deassignDependancy(dependant : Segment*) : Boolean
setDateRange(startDate : Date*, endDate : Date*)

Milestone

addChild(child : Milestone*) : Boolean
removeChild(child : Milestone*) : Boolean
getChild(i : Integer) : Milestone*

*

1 Task

*

1

4 Class Diagram

DateRange
startDate : Date*
endDate : Date*

getDuration() : Integer

ConsumableItem

NonConsumableItem

Milestone

addChild(child : Milestone*) : Boolean
removeChild(child : Milestone*) : Boolean
getChild(i : Integer) : Milestone*

*

1

* submilestone

1

Observer

update()

<<Interface>>

Subject

attach()
detach()
notify()

<<Interface>>

MainFrame

new()
open(fileName : String)
save(fileName : String)
merge(fileName : String)
close()

InternalFrame

load(fileName : String)
save(fileName : String)
merge(fileName : String)
close()

*1 *1

Task

Controller
selectedSegment1 : Segment*
selectedSegment2 : Segment*
selectedResource : Resource*

load(fileName : String)
save(fileName : String)
merge(fileName : String)
selectSegment1(segmentNo : Integer)
selectSegment2(segmentNo : Integer)
addSegment(segmentName : String, startDate : Date, endDate : Date)
removeSegment()
editSegment(newSegmentName : String, newStartDate : Date, newEndDate : Date)
selectResource(segmentNo : Integer)
addResource(resourceName : String)
removeResource()
editResource(newResourceName : String)
assignResource(percent : Integer)
deassignResource()
assignDependancy()
deassignDependancy()

1 11 1

TextView

update()

1

1

1

1

GraphicalView

update()
repaint()

1

1

1

1

ResourceManager
segmentToResourceMapPercentage : Map
resourceToTaskMapPercentage : Map

assignResource(segment : Segment*, resource : Resource*, percent : Integer) : Boolean
deassignResource(segment : Segment*, resource : Resource*) : Boolean
isAssignable(segment : Segment*, resource : Resource*, percent : Integer) : Boolean

Resource
name : String

*

1

*

1

Segment
name : String
priority : Integer

setDependant(segment : Segment*) : Boolean
removeDependant(Segment : Segment*) : Boolean
addChild(child : Segment*) : Boolean
removeChild(child : Segment*) : Boolean
getChild(i : Integer) : Segment*

11 11

*

1

*

1

subsegment

*
1

*
1

*

*

*

depends on

*

Project
projectTitle : String
modified : Boolean

fromFile(fileName : String)
toFile(fileName : String)
merge(project : Project*)
addSegment(segmentName : String, startDate : Date, endDate : Date) : Boolean
removeSegment(segment : Segment*) : Boolean
editSegment(segment : Segment*, newSegmentName : String, newStartDate : Date, newEndDate : Date) : Boolean
addResource(resourceName : String) : Boolean
removeResource(resource : Resource*) : Boolean
editResource(resource : Resource*, resourceName : String) : Boolean
assignResource(segment : Segment*, resource : Resource*, percent : Integer) : Boolean
deassignResource(segment : Segment*, resource : Resource*) : Boolean
assignDependancy(dependee : Segment*, dependant : Segment*) : Boolean
deassignDependancy(dependee : Segment*, dependant : Segment*) : Boolean

1
1

1
11

1

1

1

1
1

1
1

1

1

1

1

*

1

*

1

*

1

*

1

Description

- MainFrame and InternalFrame: The application has a main frame that holds the
menu items such as: new, open, save, merge and close document. The internal frames that
represent documents reside at the main frame’s desktop, for example when you open a
document, a new internal frame is created and being added to the main frame’s desktop.

- Controller, GraphicalView and TextView: The InternalFrame has panels that hold the
controller object that is used by user to manipulate the state of the project and the views
that presents it to the user. These components are part of the main GUI that interacts with
user.

- Project: This class encapsulates all information about the project document, namely the
name of the project document, the modified flags and the references to the segments and
resources that is contained in a project document.

- ResourceManager: ResourceManager class handles the assignment of a resource to a
segment, and keep the mapping between them in a map. For efficient computation, the
ResourceManager keeps both the map from segment to resource with corresponding
percentage and the map from resource to segment with the same percentage. It also
determines whether the modification of the date period of a task doesn’t clash with other
task that uses the same resource at that period.

- Segments, Tasks, and Milestones: Segments can be either tasks or milestones. While
tasks can be made of segments, milestones can only be made of milestones. And tasks
may depend on other segment; that is a task may not start before other tasks or milestone
which it is depended on.

- Resource, NonComsumableItem and ConsumableItem: Tasks or Milestones may
require resource in their progresses. There are 2 types of resource: consumable resources,
i.e. the ones that can be depleted in its use, and non consumable resources, i.e. the ones
that can’t be depleted.

- Date Range: A class that encapsulate the information about the date.

5 Sequence Diagrams

5.1 Create New Project

 : user
 : MainFrame frame :

InternalFrame
 : Controller : Project :

ResourceManager
 : GraphicalView : TextView

new()
new

new

new

new

new
new

Actor Action System Response
1. Click “New” menu item
on the main frame.

2. Create a new internal
frame.

 3. Create a new project and
resource manager associated
with it.

Typical Flow of Events

 4. Create GUI components,
i.e. Controller and Views

Precondition System needs sufficient memory to open up a new project.
Postcondition A new project internal frame is opened, containing a new

project.

5.2 Add Segment

 : DateRange
 : user

 : Controller : Project : TextView : GraphicalViewtask : Task

addSegment("task1":String, 1/1/0000:Date, 31/12/0000:Date)

update()

update()

repaint()

notify()

addSegment("task1":String, 1/1/0000:Date, 31/12/0000:Date)

new
new

Actor Action System Response
1. Enter new task
information field in the
textfield that is contained in
the controller and click
“Add Segment” button.

2. Create a new segment and
its date range. Associate this
segment to the project.

Typical Flow of Events

 3. Update views.
Precondition System needs sufficient memory to store the new segment

and its associated data.
Postcondition The new segment and its associated data are correctly

stored in the project.

5.3 Add Resource

 : TextView
 : user

 : Controller : Project : GraphicalViewresource :
NonConsumableItem

addResource("printer":String)

update()

update()

repaint()

notify()

addResource("printer":String)
new

Actor Action System Response
1. Enter resource
information in the text field
and click “Add Resource”
button.

2. Create new resource and
associate it to the project.

Typical Flow of Events

 3. Update views.
Precondition System needs sufficient memory to store the new resource.
Postcondition A new resource is added to the project.

5.4 Assign Resource to Task

 : user
 : Controller : Project :

ResourceManager
 : TextView : GraphicalView

selectResource(1:Integer)

selectSegment1(1:Integer)

getResource

item

getSegment

task

assignResource(100:Integer)

assignResource(task:Segment*, item:Resource*, 100:Integer)

assignResource(task:Task*, item:Resource*, 100:Integer)

update()

update()
repaint()

notify()

isAssignable(task:Segment*, item:Resource*, 100:Integer)

Actor Action System Response
1. Enter the number
associated with the resource
to be assigned, then click
“Select Resource” button.

2. Retrieve the reference to
the corresponding resource,
if any.

3. Enter segment’s number
to which the resource is to
be assigned to, then click
“Select Segment“ button.

4. Retrieve the reference to
the corresponding segment,
if any.

5. Click “Assign Resource”
button.

6. Check whether the
resource is available. If it is,
assign the resource to the
segment with the
corresponding percentage.

Typical Flow of Events

 7. Update all views.
Precondition 1 Both of the resource and the segment exist.

2. The resource utilisation must not exceed 100% at any
specific time.

Postcondition Resource is properly assigned to task, with no over-
utilisation.

5.5 De-assign Resource

 : user
 : Controller : Project :

ResourceManager
 : TextView : GraphicalView

selectResource(1:Integer)

deassignResource(task:Segment*, item:Resource*)

deassignResource(task:Task*, item:Resource*)

notify()

update()

update()

getResource

item

selectSegment1(1:Integer)

getSegment

task

deassignResource()

repaint()

Actor Action System Response
1. Enter the number
associated with the
resource, then click “Select
Resource” button.

2. Retrieve the reference to
the corresponding resource,
if any.

3. Enter segment’s number
to which the resource was
assigned to, then click
“Select Segment“ button.

4. Retrieve the reference to
the corresponding segment,
if any.

5. Click “Deassign
Resource” button.

6. Break the assignment
between resource and
segment, if any.

Typical Flow of Events

 7. Update all views.
Precondition 1. Both of the resource and segment exist

2. The task-resource relation must exist.
Postcondition Resource is properly de-assigned from task.

5.6 Assign Segment’s Dependency

task1 : Task
 : user

 : Controller : Project : TextView : GraphicalView

selectSegment1(1:Integer)
getSegment

task1

selectSegment2(2:Integer)

getSegment

task2

assignDependancy()

assignDependancy(task1:Segment*, task2:Segment*)

setDependant(task2:Segment*)

notify()

update()

update()
repaint()

Actor Action System Response
1. Enter the first segment’s
number which is to be
dependee, then click select
segment.

2. Retrieve the reference to
the corresponding segment,
if any.

3. Enter the second
segment’s number which is
to be dependant, then click
select segment.

4. Retrieve the reference to
the corresponding segment,
if any.

5. Click “Assign
Dependancy” button.

6. Link the dependency
between the 2 segments.

Typical Flow of Events

 7. Update all views.
Precondition 1. Both of the segments exist.

2. Both segments must not overlap in time.
Postcondition A dependency has been assigned between two segments.

5.7 De-assign Dependency

 : user
 : Controller : Project task1 : Task : TextView : GraphicalView

selectSegment1(1:Integer)

getSegment

task1

selectSegment1(Integer)

getSegment

task2

deassignDependancy()

deassignDependancy(task1:Segment*, task2:Segment*)

removeDependant(task2:Segment*)

notify()

update()

update()
repaint()

Actor Action System Response
1. Enter the dependee’s
number, then click select
segment.

2. Retrieve the reference to
the corresponding segment,
if any.

3. Enter the dependant’s
number, then click select
segment.

4. Retrieve the reference to
the corresponding segment,
if any.

5. Click the “Deassign
Dependency” button.

6. Unlink the dependancy
between 2 segments, if any.

Typical Flow of Events

 7. Update all views.
Precondition 1. Both of the segments exist

2. Two segments must have a dependency between them.
Postcondition A dependency has been de-assigned between two

dependent segments.

5.8 Edit Segment

 : user
 : Controller : Project :

ResourceManager
 : TextView : GraphicalViewtemp : Task

selectSegment1(1:Integer)
getSegment

task

editSegment("task2":String, 1/1/2000:Date, 31/12/2000:Date)

editSegment(task:Segment*, "task2":String, 1/1/2000:Date, 31/12/2000:Date)

setSegmentInfo

update()

notify()

update()
repaint()

getResourcesAndPercentagesPair(task:Segment*)

pairs of (r, p)

isAssignable(temp: Segment*, r:Resource*, p:Integer)
[for each pair]

new

Actor Action System Response
1. Enter the segment
number to be edited, then
click select segment.

2. Retrieve the reference to
the corresponding segment,
if any.

3. Enter new information
about the segment, then
click “Update Segment”
button.

4. For each resource
associated with the segment,
check whether the resource
is not overused with the new
date period. If ok, then
update the segment.

Typical Flow of Events

 5. Update all views.
Precondition 1. The segment exists.

2. Resources associated with the segment are not overused
even with the new date period.

Postcondition The segment is updated with the new information.

5.9 Edit Resource

 : Controller
 : user

 : Project : TextView : GraphicalView

selectResource(1:Integer)
getResource

resource

editResource("andy":String)

editResource(resource:Resource*, "andy":String)

setResourceInfo

notify()

update()

update()
repaint()

Actor Action System Response
1. Enter the resource
number to be edited, and
then click select resource.

2. Retrieve the reference to
the corresponding resource,
if any.

3. Enter new information
about the resource, then
click “Update Resource”
button.

4. Update the resource
information.

Typical Flow of Events

 5. Update all views.
Precondition The resource exists.
Postcondition The resource is updated with new information

5.10 Open Project

 : Controller
 : user

 : MainFrame frame :
InternalFrame

 : Project :
ResourceManager

 : TextView : GraphicalView

open("file1.prj":String)

new

new

new

new

load("file1.prj":String)

load("file1.prj":String)

fromFile("file1.prj":String)

load resource mappings

load data

update()

update()
repaint()

new

new

notify()

Actor Action System Response
1. Click on the “Open”
menu item in the main
frame.

2. Display the
FileOpenDialog object.

3. Enter the filename and
click “Open” button.

4. Create required objects as
in the “Create New Project”
scenario

 5. Load the data in the file.

Typical Flow of Events

 6. Update all views.
Precondition 1. Specified file must exist on system.

2. System needs sufficient memory to load the project.
3. File must be in the correct format.

Postcondition A new project internal frame (with its internal frame
controller) is opened, containing the loaded project.

5.11 Save Project

frame :
InternalFrame : user

 : MainFrame : Controller : Project :
ResourceManager

save("file1.prj":String)

save("file1.prj":String)
save("file1.prj":String)

toFile("file1.prj":String)

dump data

getResourceMappings

resourceMappings

dump mappings

getActiveFrame

Actor Action System Response
1. Click on the “Save As”
menu item on the
mainframe.

2. Display the
FileSaveDialog object

Typical Flow of Events

3. Specify the filename and
click “Save” button.

4. Dump all the data in the
specified file

Precondition 1. There must be an open project.
2. System needs sufficient disk space to save the file.
3. File must not locked by the other application.

Postcondition Data is saved in the application specific format into file.

5.12 Merge Project

frame :
InternalFrame : user

 : MainFrame : Controller p1 : Project r1 :
ResourceManager

r2 :
ResourceManager

 : TextView : GraphicalView

merge("file2.prj":String)

merge("file2.prj":String)

merge("file2.prj":String)

merge(p2:Project*)

p2 : Project

new
new

fromFile(String)

load data

load resource mappings

notify()

update()

update()

repaint()

getActiveFrame

Typical Flow of Events Actor Action System Response
 1. Click “Merge” on menu

item on the main frame.
2. Display FileOpenDialog
object.

 3. User selects file to merge
with, and click “Open”
button.

4. Load the data associated
with the opened (merged)
file into temporary project
object.

 5. Merge it with the opened
project.

 6. Update all views.
Precondition 1. There must be an opened project.

2. Specified file must exist on system.
3. System needs sufficient memory to load the second
project.

Postcondition Selected file is merged into currently opened file.

5.13 Close Project

 : InternalFrame
 : user

 : Controller : Project :
ResourceManager

 : TextView : GraphicalView : MainFrame

destroy

destroy

destroy

destroy
destroy

close()

getActiveFrame

close()

Typical Flow of Events Actor Action System Response
 1. Click “Close Project” on

menu item.
2. Close the active frame,
which in turn destroy all
components that contained
in it, including the Project
and Resource Manager
object.

Precondition There is at least one active frame in the main frame’s
desktop.

Postcondition The project internal frame and project document are
properly closed.

6 CRC Cards

Main Frame
Handles the document specific tasks, such as
new, open, save and close.

InternalFrame

Container for InternalFrame.

InternalFrame
Container for controller and views. Main Frame
 Controller
 TextView
 GraphicalView

TextView
InternalFrame Display the state of the project document in

text based format. Project

GraphicalView
InternalFrame Display the state of the project document in

graphical format. Project

Controller
Internal Frame Handles user inputs that in turn modify the

state of project document. Project

Project
Encapsulates the document information
including segments and resources.

Controller

Response to the query that is sent by the
controller.

TextView

Notify changes of the internal state to the
views.

GraphicalView

 Segment
 Resource
 ResourceManager

ResourceManager
Keep the information about the assignment of
each resource to the corresponding segments.

Project

Check the availability of the resource. Segment
 Resource

Resource
Holds information about the resource. Project
 ResourceManager
 NonConsumableItem
 ConsumableItem

NonConsumableItem
Represents the Resource that can’t be
depleted.

Resource

 Project
 ResourceManager
 NonConsumableItem
 ConsumableItem

ConsumableItem
Represents the Resource that can’t be
depleted

Resource

 Project
 ResourceManager
 NonConsumableItem
 ConsumableItem

Segment
Holds the information about the segment Segment
 Project
 ResourceManager
 DateRange
 Milestone
 Task

Task
Represents a task Segment
 Project
 ResourceManager
 DateRange
 Milestone
 Task

Milestone
Represents a milestone Segment
 Project
 ResourceManager
 DateRange
 Milestone

 Task

DateRange
Encapsulate the information about date Segment

